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Abstract

We present a new geometric calibration method for a

structured light system combining a projector with a cam-

era, using a planar target with circular control points. By

solely exploiting the mapping between projected conics, the

proposed method is strictly geometric and provides unbi-

ased camera to projector correspondences during its ap-

plication. Such a geometric method does not rely on ra-

diometric calibration. Moreover, the method consistently

ensures uniform coverage of the working volume and au-

tomatically avoids interference between both the projected

and the printed patterns on the calibration target.

1. Introduction

Since they can provide full field 3D range images, struc-

tured light systems (SLS) are frequently used for capturing

the 3D shape of static or moving objects [4, 14, 9, 11, 13].

SLS are typically composed of a controllable white light

projector and one or more cameras. When only one camera

is used along with the projector, the ensemble must be geo-

metrically calibrated to provide accurate 3D measurements

from triangulation. Several calibration methods have been

published for that purpose [12, 10, 5]. They mainly differ in

the type of target and procedure, the projected pattern, and

the projector model.

We propose a rigorous method that is easy to apply and

that makes it possible to calibrate using a planar target with

circular control points. For their higher accuracy, circular

control points are of common use in camera calibration for

photogrammetric applications [3]. In this context, one must

be aware that the projection of the center of a circle does not

correspond to the center of the ellipse in the image. This

subpixel bias is systematic and depends on the viewpoint,

the optics of the system and the size of the control point.

In order to eliminate such a bias, Heikkila proposed in [3]

to model the projection of the conic contour rather than its

(a) (b)

Figure 1. (a) The camera is calibrated from a
planar target printed with a pattern of circu-

lar control points. (b) The projection of an
adapted pattern of ellipses instantiates a sec-
ond set of circular points on the target with-

out interfering with the printed pattern.

center during the calibration. In this paper, we extend the

method to calibrate a camera-projector pair.

Although the projector can be calibrated as a second

camera, all observations must be collected by the camera

and thereby, one must determine the correspondence be-

tween pixels in the camera and projector. Some methods

have been proposed for calibrating SLS with circular con-

trol points [5, 2]. None of these methods exploits the ho-

mography between the ellipses’ contours in the camera and

projector. Actually the correspondence is usually obtained

by applying a phase-shift technique to match the center of

the ellipse with its corresponding point in the projector. It

must then be assumed that this point corresponds to the cen-

ter of the circle on the calibration target. Besides introduc-

ing the biased center, the phase-shift approach relies on ra-

diometric calibration for subpixel accuracy.

Alternatively, we propose to use the same target with

black circular points on a light background that is typi-

cally used in camera calibration. From the projector, cir-



cular points are projected between the printed black points

and then observed by the camera (see Fig.1(b)). It is there-

fore possible to exploit the camera-to-projector homogra-

phy to map the conic between the two devices, thus avoid-

ing the biased center. Moreover, we avoid the explicit cal-

culation of 3D points on the target. Since it is then possible

to calibrate the projector as a second camera, the calibra-

tion target is displaced in the working volume and the sys-

tem is calibrated as a stereo pair. The intrinsic parameters

and the projector-to-camera transformation are finally opti-

mized using bundle adjustment.

During the calibration procedure, one must avoid the

overlap between projected and printed points on the target.

Such overlap causes interference between the two patterns

and affects the accuracy of the detected ellipses in the im-

age. For this reason, the system automatically adapts the

projected control points to interleave between black circles

on the target. Besides avoiding interference, both printed

and projected circular points are distributed uniformly on

the target and thus within the working volume. Moreover,

rather than projecting circles, the calibration system further

adapts by projecting ellipses that will map to circles on the

calibration target (see Fig.1). By doing so, we avoid high

eccentricity ellipses in the observed image when the target

is rotated.

Since it is automated, the procedure is very simple to ap-

ply and only requires a planar target with dark circular con-

trol points. In the sequel, a review of existing approaches

is presented along with their limitations. The details of the

proposed approach and its implementation follow in section

3 before the results section.

2. Related work

A usual method to reconstruct an object with structured

light consists in projecting multiple stripes on the object.

Triangulation is then performed between the ray cast from

the edge points of the deformed stripe in the camera image

and its corresponding plane cast from the projector image.

In [12], it is proposed to model each projected stripe indi-

vidually with four parameters describing the stripe plane in

the camera reference frame. To accomplish this, the camera

is first calibrated from the printed pattern of a 3D target. The

target consists of two perpendicular planes and it is oriented

such that the projection of a stripe illuminates both planes.

The points of an imaged stripe are back-projected from the

camera to the target and its corresponding plane parameters

are estimated from the 3D points. Although intuitive, this

model quickly becomes inadequate and over parameterized

when each column or line of the projector image are to be

modeled.

Instead of modeling each stripe individually, in [11, 4]

it is proposed to estimate a global 2x4 transformation ma-

trix describing the relationship between the 3D world points

and the 1D stripe coordinates of the projector. This model

is a 1D camera pinhole and it gathers all of the planes in a

single representation. To recover the 1D pinhole parame-

ters, the camera is first calibrated from a 3D target. The

target consists of two perpendicular planes printed with a

checkerboard pattern. Then, stripes are projected on the

target and their corresponding 3D points are obtained by

back-projection from the camera image. The 1D to 3D cor-

respondences provide enough constraints to calibrate the 1D

pinhole. It is interesting to notice that in [4], interfering

stripe points that were projected over the printed pattern are

not considered for the calibration. Still, the accuracy of the

calibration method relies on the accuracy of the stripe local-

ization in the camera image.

In [10], a checkerboard pattern is projected on the tar-

get instead of stripes. The localization of such calibration

markers is more accurate than the edges of a stripe. The

projector is calibrated as a 2D pinhole. The target consists

in a plane where the first half is printed with the calibration

pattern and the second half is white. This white section of

the target is placed in front of the projector while the pattern

is projected. The pose of the pre-calibrated camera is com-

puted from the printed pattern, which allows the projected

pattern to be back-projected from the camera to the target.

This process is repeated for three or more views of the tar-

get, gathering enough 2D-3D correspondences to recover

the projector parameters with a standard camera calibration

method [15]. This method exhibits an important issue; the

projected markers should be localized accurately and free

from interference with the printed pattern. However, the

recovered parameters are optimized only in the calibration

volume of the projector, which is different from the com-

bined working volume with the camera. A small error in

the camera pose will result in a larger error in the recovered

3D marker coordinates. This motivates the projection of an

adapted calibration pattern directly in the printed region of

the target while covering the working volume.

The methods proposed in [2, 5] attempt to eliminate the

latter problem by exploiting the same markers to calibrate

both the camera and projector. They use white circular con-

trol points printed on a dark planar target. After project-

ing light on the target, ellipses corresponding to the circular

points are extracted in the camera image. Then, a phase-

shift technique is applied to match the center of the ellipse

with its corresponding point in the projector. The centers

of the detected ellipses are assumed to correspond to the

3D center of the target circles. This allows the projector

to be calibrated as a 2D pinhole from the correspondences

between the 3D markers and the projector coordinates ob-

tained from the phase-shift. However, due to projective de-

formation, the detected ellipse centers in the camera image

do not correspond to the 3D circle centers. The phase-shift
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algorithm wrongly associates the 3D marker centers thus

introducing a bias. The bias can be eliminated in the case

of camera calibration by projecting the conic equation of

the circular contour instead of the marker center [3]. Still,

the phase-shift algorithm cannot yield the corresponding el-

lipse center coordinates in the projector image since it is not

directly observable in the camera image. To solve this prob-

lem, one could use a printed checkerboard pattern which is

not affected by the bias, but phase-shift methods are inac-

curate near edges and dark regions.

An acceptable alternative is to project a checkerboard in-

terleaved within the same printed pattern and observe it with

the camera. A homography could then be exploited to map

the observed pattern between the camera and the projec-

tor. In this context, the projection of circles instead of a

checkerboard pattern will lead to better accuracy. Actually,

for an image region of the same size, the localization of a

circle benefit from a longer contour when compared to the

edges of the checkerboard. Moreover, sensitivity to posi-

tion and orientation due to image discretization is reduced.

In a simulation where images of both patterns were gener-

ated at random positions and orientations, we observed that

ellipse centers were on average ten times more accurate. In

the next sections it is shown how to calibrate a SLS using

circular points without introducing a bias.

3. SLS calibration

In this section, we first describe the projection model of

the camera and projector, before explaining the procedure to

recover their parameters. The superscript ’c’ and ’p’ will be

added to discriminate between the parameters of the cam-

era and projector respectively. By the same token, the sub-

scripts ’c’, ’p’ and ’w’ (world-target) will be used to specify

the reference frame when necessary.

3.1. Camera model

The projection model of the camera is a pinhole with

lens distortion compensation. The pinhole model describes

the relationship between a 3D point P̃w = [X,Y,Z, 1]T

in the world reference frame and the corresponding image

point ã = [u, v, 1]T . Here, the tilde superscript indicates

homogeneous coordinates. The relation is a projection de-

fined as λã = K
[

R t
]

P̃. In this equation, the matrix

K =




α 0 u0

0 β v0

0 0 1


 includes the camera intrinsic para-

meters, where (u0, v0) are the coordinates of the principal

point, α and β are the scale factors of the image horizon-

tal and vertical axes, (R, t) are the 3x3 rotation matrix and

3x1 translation vector describing the transformation from

the world to the camera reference frame, and λ is an arbi-

trary scale factor. To calibrate the model, we use a planar

target assumed to lie on the plane Z = 0. Thus, the 3x4 pro-

jection matrix reduces to a 3x3 homography. If we denote

the ith column of the rotation matrix R by ri, the reduced

transformation is given by [15]:

K [r1 r2 r3 t]




X

Y

0
1


 = K [r1 r2 t]




X

Y

1


 , (1)

with the homography H = K [r1 r2 t]. In practice, due to

lens distortion, a point is not imaged at coordinates a pre-

dicted by the projection, but at distorted coordinates ad. To

compensate for the distortion, the projection model is aug-

mented with two radial (k1, k2) and two tangential terms

(p1, p2). These four additional intrinsic parameters are rep-

resented in a vector d. The coordinates ad can then be cor-

rected using the following relation a = ad − δ(ad, d) where

δ(ad, d) =[
xd(k1r

2
d + k2r

4
d) + 2p1xdyd + p2(r

2
d + 2x2

d)
yd(k1r

2
d + k2r

4
d) + 2p2xdyd + p1(r

2
d + 2y2

d)

]
,

(2)

and [xd, yd, 1]T = K−1[ud, vd, 1]T and r2
d = x2

d+y2
d. Com-

puting the distortion in normalized coordinates improves

the conditioning of the system when solving for the para-

meters of the model. During the calibration process, dis-

tortion must also be added to points, but there are no direct

methods to inverse the distortion function. In [3], an inverse

model based on a Taylor series approximation is proposed.

However, for short focal lens with significant distortion, the

method complexifies due to the need of additional terms in

the series development. An alternative method, simple and

very accurate, is to recursively approximate the inverse so-

lution. The additional calculation is not problematic in the

context of offline calibration. The recursion equations are:

ad ≈ a + δ(ad, d) ≈ a + δ(a + δ(ad, d), d) ≈ · · · . (3)

In our implementation, we use 10 iterations to generate the

inverse mapping.

To lighten the notation in the next sections, we group

the camera intrinsic parameters in a single vector θc =
{α, β, u0, v0, k1, k2, p1, p2}, and the extrinsic parameters in

Θc = {rxyz, t}. Here, rxyz is a three element vector of a

minimal representation for the rotation R. We have chosen

to use the canonical exponential coordinates given by Ro-

drigues’ formula [6]; quaternions are also adequate.

During the calibration process, the camera model will be

used to project ellipses Ew from the target to the camera

image as well as to add distortion to the coordinates of the

resulting ellipses’ centers to obtain the distorted point ad.

For this purpose, we introduce the function Gc such that
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ad = Gc(Ew, θ,Θ). In the function, an ellipse is projected

using a homography constructed from the reduced projec-

tive transformation in Eq.1. A homography H transforms a

3x3 ellipse E to E′ as follows:

E′ = H−T EH−1. (4)

After the projection, the distortion is added to the ellipse

center. The center is extracted by the multiplication of the

ellipse inverse E−1 with the vector [0 0 1]T [3]. For con-

venience, we include the following expression of the 3x3

conic matrix of a circular marker E of radius r centered at

coordinates (x, y) since it will be required in the procedure:

E =




−1
r2 0 x

r2

0 −1
r2

y
r2

x
r2

y
r2

r2
−(x2+y2)

r2


 . (5)

3.2. Projector model

The projector is modeled as an inverse pinhole camera

with lens distortion. Therefore, the model developed in the

previous section applies and one obtains the projector in-

trinsic parameters θp = {αp, βp, u
p
0, v

p
0 , k

p
1 , k

p
2 , p

p
1, p

p
2} and

extrinsic parameters ΘP = {r
p

xyz(c), tpc}. The extrinsic pa-

rameters describe the pose of the projector in the camera

reference frame.

In order to obtain the projector model parameters, ob-

served ellipses are projected from the camera image to the

projector image. The relation between both images is a ho-

mography induced by the target plane. This homography

involves the intrinsic and extrinsic parameters of both, the

camera and the projector, as well as the plane orientation

with respect to the camera. It is recovered from the follow-

ing relation [6]:

Hcp = Kp

[
Rp

c − tpc
1

d
NT

]
(Kc)−1, (6)

where (N, d) are the target plane parameters expressed in

the camera reference frame. The parameters of the plane

are obtained from the camera pose with respect to the target

reference frame (Rc
w, tcw). The plane normal vector is given

by N = [rc
13, r

c
23, r

c
33]

T and its distance to origin by d =
−[rc

31 rc
32 rc

33]t
c
w. Under this notation, a 3D point P on the

plane verifies NT P + d = 0.

During the calibration process, the projector model will

be exploited to project ellipses from the distorted camera

image to the undistorted projector image. More precisely,

the ellipses observed in the camera image are first undis-

torted with the camera parameters1, then transferred to the

1Two approaches to remove distortion from an ellipse are discussed in

section 4.

projector with the homography from Eq.6. Finally, the re-

sulting ellipses are undistorted with the projector parame-

ters and their center is extracted to obtain the points ap.

We summarize these steps with the function Gp such that

ap = Gp(Ec, θ
c,Θc, θp,Θp).

3.3. Calibration target

Figure 2. Pattern of the calibration target. The
virtual control points, shown as dotted cir-
cles, are not visible on the actual target and

will be instantiated by the projector.

The calibration target consists in a white diffuse plane

printed with dark circular markers, as displayed in Fig.1(a).

The size of the printed markers is chosen such that their

diameters typically vary between 20-40 pixels in the image.

The notable characteristic of the target is the presence of

virtual circular control points, depicted as dotted circles in

Fig.2. These markers are part of the target model to simplify

the generation of the pattern to project; they are not visible

on the actual target. As it is displayed in Fig.1(b)), they

will be instantiated by the projector during the calibration

procedure. In the pattern, the three large circles define an

affine basis that is easy to recognize from any view of the

target. The control points are then progressively matched

from these three ellipses toward the border of the image.

3.4. Calibration procedure

3.4.1 Data acquisition

The calibration of the SLS requires observations from three

or more views of the planar target. For each image, we

need to extract the two series of ellipses corresponding to

the printed and virtual markers. The ellipses corresponding

to the printed markers are easily extracted under the projec-

tion of uniform white light (see Fig.3). However, to make

the virtual markers visible to the camera, we need to synthe-

size an image of the virtual markers as they would be seen

by the projector and then reproject them. This is possible is

we recover the approximate homography between the tar-

get and projector. In this context, an approximation of the

homography is sufficient since we aim mainly to avoid in-

terference of the projected pattern with the printed markers.
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The three steps that are necessary to recover the target-to-

projector homography are now described.

�

� �

�
��

Figure 3. Data acquisition (1/3): a) A white
image is projected on the target to recover

a first estimate of the homography Hwc. The
camera and projector images are in the top
and bottom left respectively, and a view of the

calibration target is on the right. The printed
pattern is depicted in gray.

The first step consists in recovering the target-to-camera

homography Hwc. This homography is directly estimated

from the centers of the printed markers on the target ac
w and

their corresponding centers in the camera image ac
c. At this

point, it is not necessary to consider the projection asym-

metry of ellipses. However, to compensate for the radial

distortion of the camera, we also estimate a single radial

distortion term kc
1 expressed with respect to the image cen-

ter. The homography and distortion term are obtained with

a standard non-linear optimization [15].

Once the homography Hwc is obtained, the second step

consists in approximating the camera-to-projector homog-

raphy Hcp. This is done by projecting a regular grid of black

disks on the target as shown in Fig.4. The projected markers

are identified in the camera image by background subtrac-

tion from the initial image. The centroid points of the identi-

fied regions are extracted and undistorted with kc
1. A coarse

estimate of the camera-to-projector homography Hcp is then

computed from the correspondence between the undistorted

centroid points in the camera image and the circle centers in

the projector image. At this point, the segmentation needs

not to be perfect for all ellipses. The recovered homography

only aims to project circles between the printed pattern and

will be discarded afterwards.

In the third step, the target-to-projector homography

Hwp is computed by combining the previous homographies

as Hwp = HcpHwc. This allows the virtual circular mark-

ers to be projected from the target to the projector image.

An image of the desired ellipses is synthesized and repro-

jected on the target (see Fig.5). The camera then acquires

an image of the target and the ellipses corresponding to the

virtual markers are extracted and matched with the ellipse

centers in the projector image. This final correspondence

will be used for the precise calibration of the projector in

a global optimization. Still, in order to initialize the opti-

mization the projector needs to be precalibrated in the same

reference frame as that of the camera. Thus, the ellipses cor-

responding to the virtual markers on the target are recovered

by backprojecting the corresponding ellipses from the cam-

era to the target with the homography Hcw. After repeating

these three steps for each view of the target, the acquisition

is completed. Table 1 summarizes the information extracted

for each view.

Table 1. Information extracted for each view
of the target

Description

Camera
Ec

w Printed markers on the target

ac
c Corresponding center coordi-

nates in the camera image

Projector

Ep
c Virtual markers in the camera

image

Ep
w Corresponding ellipses on the

target

ap
p Corresponding center coordi-

nates in the projector image

3.4.2 Initialization

To initialize the parameter optimization, the camera and

projector are calibrated separately with the method pro-

posed in [3]. The camera is pre-calibrated from the cor-

respondences between the printed ellipses of the target Ec
w

and their centers in the camera image ac
c whereas the projec-

tor is pre-calibrated from the correspondences between the

virtual markers of the target Ep
w and their centers in the pro-

�

� �

�
��

�
�

�
Figure 4. Data acquisition (2/3): A regular grid

of circles is projected on the target to re-
cover an approximation of the homography
Hcp. (See Fig.3 for more details)
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Figure 5. Data acquisition (3/3): The virtual
markers are transferred from the target to the

projector using the homography Hwp to syn-
thesize an image of the virtual markers. The
reprojection of the image instantiates the vir-

tual markers. (See Fig.3 for image details)

jector image ap
p. Note that the initial principal point of the

projector required by the routine in [3] should be shifted up-

ward from the optical axis of the lens to reflect the position

of the projector image with respect to the lens. The shift is

usually available from the projector specifications. The ini-

tialization yields the intrinsic parameters of the camera and

projector along with their poses relative to the target.

3.4.3 Optimization

The optimization finds the parameters of the SLS model

ϕSLS = {θc, θp,Θp,Θc
1, . . . ,Θ

c
M} that minimize simul-

taneously the projection error in the camera and projector

image for the O views of the target. The error to minimize

is summarized by the following objective function:

J(ϕSLS) =

O∑

k

( ∑M

i ‖ac
c(ik) − Gc(Ec

w(ik), θ
c,Θc

k)‖2+
∑N

j ‖a
p

p(jk) − Gp(Ep

c(jk), θ
c,Θc

k, θp,Θp)‖2

)
,

(7)

for M printed markers and N virtual markers in each image.

The parameters minimizing Eq.7 are obtained by applying

the Levenberg-Marquardt algorithm [8]. The pose of the

projector relative to the camera Θp is computed from the

initial parameters as

[
Rp

c tpc
0 1

]
=

[
Rp

w tpw
0 1

] [
Rc

w tcw
0 1

]
−1

.

We use the extrinsic parameters from the first view of the

target. It is important to note that a single projector pose will

be estimated for all calibration image pairs. This enforces

the rigidity constraint of the system where the projector is

rigidly fixed to the camera.

4. Results

To validate the calibration method, we first analyze the

residual error after the optimization and the recovered dis-

tortion parameters. Then, a series of 3D reconstructions are

performed to assess the overall accuracy of the system by

comparing the reconstructed objects to precise 3D models

measured with a 3D laser scanner.

The SLS used to generate the following results is

composed of a PointGrey DragonFly2 greylevel camera

mounted with a 12 millimeters (mm) lens and an InFo-

cus LP350 projector. The resolution of both devices is

1024x768 pixels. The baseline of the SLS system is approx-

imately 650mm and the devices are rotated so that their op-

tical axes intersect at approximately 1500mm. The recon-

structions were performed under the same ambient lighting

that was present for the calibration. This is important to pre-

vent any bias caused by chromatic aberration of the camera

lens.

(a) (b)

Figure 6. The calibration target as seen by the
camera from two viewpoints. The top-right
and bottom-right insets are images of a vir-

tual and printed marker respectively.

The calibration is performed from 21 images of the pla-

nar target acquired under different viewpoints. The num-

ber of images required for a repeatable calibration depends

on the setup and should be evaluated once. To obtain this

number, 50 calibration experiments were conducted from

random subsets of images acquired from 42 different view-

points. The calibration experiments were repeated using

5 to 30 images. The variance of the recovered parame-

ters reached a minimum at 21 images. The ellipse parame-

ters required by the calibration procedure are then estimated

with the method presented in [7]. In Fig.6, it is possible to

compare the virtual and printed markers as seen by the cam-

era from two viewpoints. Although the virtual markers are

slightly blurry, their shape and position make them almost

impossible to distinguish from the actual printed markers.

When calibrating the system, there are two methods for

processing ellipse distortion and both do not yield exactly

the same ellipse positions. In the first method, a distortion
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vector is computed for the current ellipse center and used to

translate the ellipse. This is what is done in [3]. In the sec-

ond method, the distortion is applied to the detected contour

points before the ellipse is fitted. With our system and for an

ellipse having a radius of 20 pixels located near the border

of the camera image, the difference between both methods

is in the order of 0.03 pixel. The small but systematic dif-

ference can be explained with the camera distortion curve

in Fig.7 which shows the distortion magnitude with respect

to the distance from the principal point. The magnitude for

radii representing the two boundaries of an ellipse differs

sufficiently to warp the ellipse along the radial direction and

affects the fitting. We have implemented both methods but

we did not observe significant improvement in the results.

The precision of our target model is approximately equiv-

alent to the difference. Nevertheless, the following results

were generated with the second method.

The residual error vectors obtained after optimization

had a mean and maximum magnitude of (0.07, 0.40) pixel

for the camera, and (0.07, 0.28) pixel for the projector. The

low RMS error confirms the accuracy of the detection which

benefits from the adapted projected pattern. Interestingly,

the error is smaller for the projector calibration. This is ex-

plained by the fact that the ellipses used to calibrate the pro-

jector are extracted independently in each image, with high

precision. Conversely, the printed markers used to calibrate

the camera are assumed to lie on a regular grid, which might

not be exactly true depending on the accuracy of the target.

To assess the projective bias of ellipses’ centers, the residual

error was re-computed with the same calibration parameters

but only considering the centers of the ellipses instead of

projecting the conic. Depending on the orientation of the

target with respect to the camera image, all points were af-

fected by a systematic bias reaching up to 0.1 pixel. This

bias is higher than the mean error and thus not appropriate

for accurate measurements.

The radial distortion magnitude of the camera and pro-

jector are plotted in Fig.7 with respect to the radial distance

from their principal points. The curves show a significant

radial distortion component for both, the camera and pro-

jector. This confirms the importance to compensate lens

distortion for the projector. We have also observed a shift

of nearly 400 pixels for the projector principal point toward

the top of the image. As noted in the previous section, this is

due to the upward shift of the projector image with respect

to the optical center of the lens assembly.

In order to assess the overall accuracy of the SLS, two

objects were reconstructed and compared to precise mod-

els. We first evaluated the planarity of the reconstruction

of a perfectly planar surface. The dimensions of the plane

are 405x405mm and it is located at 1500mm in front of the

SLS. To measure the surface, a grid of 20x20 photogram-

metric targets was projected on the plane and triangulated.
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Figure 7. The radial distortion magnitude with
respect to the principal point distance for the

camera and projector.

They were localized in the camera image with the Forstner

operator [1]. The projection of such targets ensures a purely

geometric measure minimizing photometric factors.

The reconstructed surface is displayed in Fig.8(a). A

plane was fitted to the 3D points and the mean and max-

imum value of the Euclidean distance between both is

0.10mm and 0.26mm respectively. An averaging filter was

then applied to the surface to appreciate its curvature. The

smoothed surface, displayed in Fig.8(b), exhibits a peak to

peak curvature of approximately 0.2mm.

The second object is a resin-plaster head statue of

3003mm3 which is reconstructed at a distance of 1500mm.

We performed two reconstructions and compared the sur-

face with a precise model obtained from a laser range scan-

ner. The SLS was calibrated before each reconstruction.

The correspondence between the camera and projector co-

ordinates was obtained by the projection of a combination

of grey-code pattern followed by a phase-shift method [14].

The procedure returned 66149 points for the first scan and

77110 points for the second scan. The camera view and the

alignment error of the recovered models, in mm, are dis-

played in Fig.9.

(a) (b)

Figure 8. (a) The reconstructed surface of a
plane along with the fitted plane shown in
red. (b) The curvature of the surface obtained

after noise filtering. (The axes are in mm)
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(a) (b)

(c) (d)

Figure 9. The 3D reconstructions of a real ob-

ject from two viewpoints. The images on the
left show the viewpoints of the object under
the projection of a full white pattern whereas

the right plots depict the alignment error of
the reconstructed model (in mm).

The uniform distribution of the error suggests that there

is no systematic bias in the reconstruction. The stronger

noise near the nose in Fig.9(b) is caused by the acute angle

of the projector light with the surface. The magnitude of the

error is similar to that observed for the plane reconstruction

in Fig.8 (both are displayed at the same scale). Further-

more, the two reconstructions exhibit a similar error which

confirms the repeatability of the calibration method.

5. Conclusion

We have presented a rigorous and automatic method to

accurately calibrate a SLS from circular control points. The

method differs from previous works in that it is purely geo-

metric and provides unbiased observation for the camera

and projector calibration. In our setup, considering the pro-

jection of ellipse contours instead of centers allowed us to

correct a bias reaching 0.1 pixel, which is more than the

mean reprojection error. Instead of relying on a phase-shift

method, or on the projection of stripes to find the correspon-

dence between the camera and projector, we directly project

calibration markers on the target. This is made possible

by adapting the projected pattern to interleave between the

printed markers. Furthermore, the projection maps ellipses

to circles on the target, creating optimal conditions for the

localization in the camera image. This resulted in a RMS

calibration residual error of 0.07 pixel for both the projector

and camera. Finally, we have demonstrated the accuracy

and unbiasedness of the recovered parameters by compar-

ing the reconstructed surface of a plane and of a head statue

with precise models.
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